

使用指南

RAM 程序调试使用指南

概述

本文描述了当代码完全运行在 RAM 的情况下,如何使用 IDE 进行仿真调试。

适用范围			
SPC1125 系列	SPC1125, SPC1128		
SPC1168 系列	SPC1155, SPC1156, SPC1158, SPC1168,		
	SPD1148, SPD1178, SPD1188, SPD1163,		
	SPM1173		
SPC2168 系列	SPC2168, SPC2165, SPC2166, SPC1198		
SPC1169 系列	SPC1169, SPD1179, SPD1176		
SPC2188 系列	SPC1185, SPC2188		

- 注意: 1. SPC2168 的 CAU 核,默认运行在 RAM 中,不在此文档适用范围内,详细内容 请参考《SPC2168 CAU 双核调试指南》。
 - 2. SPC2188 的 CPU1 核,默认运行在 RAM 中,不在此文档适用范围内,详细内容 请参考《SPC2188 双核调试指南》。

目录

1	安装 IDE	6
2	J-LINK 与目标板连接	6
3	检查 SYSTEM 中 Debug 模式寄存器	9
4	检查 Debug 控制位	10
5	KEIL IDE 调试 RAM 中的程序	12
5.1	配置代码地址	12
	5.1.1 Keil UI 配置代码地址	12
	5.1.2 Sct 文件配置代码地址	13
5.2	配置 ini 文件	13
5.3	取消 Flash 配置	16
5.4	调试	18
6	IAR IDE 调试 RAM 中的程序	19
6.1	配置代码地址	19
6.2	配置 mac 文件	19
6.3	取消 Flash 配置	20
6.4	调试	21

图片列表

图 2-1 :	J-LINK 接口	6
图 5-1 :	采用 UI 配置代码地址	12
图 5-2 :	采用 sct 文件配置代码地址	13
图 5-3 :	J-LINK	14
图 5-4 :	.ini 文件与 Keil 配置代码地址关系	15
图 5-5 :	.ini 文件与 Keil 配置代码地址关系	15
图 5-6 :	DEBUG 工具读取目标 ID	16
图 5-7 :	Flash Download 配置	17
图 5-8 :	Debug warning	18
图 5-9 :	Debug 仿真	18
图 6-1:	采用 icf 文件配置代码运行地址	19
图 6-2:	J-LINK	20
图 6-3:	Flash Download 配置	20
图 6-4:	Debug warning	21
图 6-5:	选中 Cortex-M4	21
图 6-6:	Debug 仿真	21

表格列表

表 2-1:	SWD 接口信号定义	6
表 2-2:	J-LINK 与 SPC1169 管脚连接	7
表 2-3:	芯片与 BOOT 电平	7
表 2-4:	芯片调试接口电平	8
表 4-1:	配置字的构成及其描述	10
表 4-2:	配置字的构成及其描述	10
表 4-3:	配置字的构成及其描述	11
表 4-4:	配置字的构成及其描述	11
表 4-5:	配置字的构成及其描述	11

版本历史

版本	日期	作者	状态	变更
C/0	2024-06-04	HangSu	Outdated	1. 首次发布。
C/1	2024-08-26	LemengZhou	Released	1. 修改为全系列通用文档。

1 安装 IDE

不同的 KEIL 及 IAR 版本,会有不用的配置方式,在本文中 KEIL 版本为 MDK523, IAR 版本 为 EWARM-CD-8324-20889。

2 J-LINK 与目标板连接

J-LINK 适配器支持 2 种接口,如图 2-1 所示,推荐使用 SWD 接口,因为更省引脚。

VCC 1	2 VCC (optional)	VCC 1 2 VCC (optional)
TRST 3	□ □ 4 GND	N/U 3 🗌 🔄 4 GND
TDI 5	0 0 6 GND	N/U 5 6 GND
TMS 7	0 0 8 GND	SWDIO 7 3 8 GND
TCLK 9	0 0 10 GND	SWCLK 9 10 GND
RTCK 11	□ □ 12 GND	N/U 11 12 GND
TDO 13	□ □ 14 GND	SWO 13 14 GND
RESET 15	□ □ 16 GND	RESET 15 16 GND
N/C 17	□ □ 18 GND	N/C 17 18 GND
N/C 19	□ □ 20 GND	N/C 19 20 GND
	JTAG	SWD

图 2-1: J-LINK 接口

表 2-1: SWD 接口信号定义

Signal	Connects to	
SWDIO	Data I/O pin	
SWCLK	Clock pin	
VCC	Positive Supply Voltage, the pin is optional.	
GND	Digital ground	
RESET	RSTIN pin, the pin is optional.	
SWO	Serial data output, the pin is optional.	

J-LINK 与各型号芯片的硬件连接如表 2-2 所示。

芯片型号	SWD 引脚	
	SWDIO	SWCLK
SPC1169 系列	GPIO17	GPIO18
SPC1168 系列	GPIO38	GPIO39
SPC2168_CPU, SPC1198, SPC2166_CPU, SPC2165_CPU,	GPIO49	GPIO48
SPC2188_CPU0	GPIO80	GPIO81
SPC1185	GPIO80	GPIO81
SPC1128	GPIO38	GPIO39

表 2-2: J-LINK 与 SPC1169 管脚连接

注意: 1. J-LINK 调试时, TRSTN 和 BOOT 电平必须与表 2-3 一致;

2. J-LINK 下载器端口电压需要与芯片端口电压

3. 表 2-4 一致。

表 2-3: 芯片与 BOOT 电平

芯片型号	BOOT	TRSTN
SPC1169 系列	х	高
SPC1168 系列	高	高
SPC2168,SPC1198	高	高
SPC2188	Х	高
SPC1185	Х	声
SPC1128	Х	高

[1] 图中 X 代表高低电平都可以。

注意: 芯片对应的 BOOT 和 TRSTN 管脚号,可通过查询对应的数据手册进行确认。

表 2-4: 芯	片调试接口电平
----------	---------

芯片	调试接口电平
SPC1168 系列,SPC1125 系列,SPC2168 系列,SPC2188 系列	3.3V
SPC1169 系列	5V

- 注意: **1.** 给 J-Link 引脚 **1** (VCC) 接入
 - 2. 表 2-4 参考电压前,需要确保其上无电压(部分 J-Link 调试器默认给引脚 1 (VCC) 接入 3.3V 电平),否则会烧芯片;
 - 3. 具有默认电压(3.3V)的 J-Link 引脚 1(VCC),可以和调试接口电平为 3.3V 的 芯片正常通信。

3 检查 SYSTEM 中 Debug 模式寄存器

如果发现通过 SWD 接口无法 Debug 连接芯片,可通过 ISP Tool 工具下载串口打印代码, 打印 Debug 模式寄存器的值,用以进行以下检查。

如果是 SPC1169, SPD1179, SPD1176, 需要检查 SYSTEM->DBGIFCTL 是否为 0(SWD);

如果是 SPC1185, 需要检查 SYSTEM->DBGIFCTL 是否为 4(SWD for CPU0);

如果是 SPC2188, 需要检查 SYSTEM->DBGIFCTL 是否为 4(SWD for CPU0)或 6(SWD for CPU0 and CPU1);

SPC1168, SPD1148, SPC1158, SPD1163, SPD1178, SPD1188, SPC1128, SPC1198, SPC2168, SPC2166, SPC2165 不需要做以上检查。

4 检查 Debug 控制位

如果发现通过 SWD 接口无法 Debug 连接芯片,可通过 ISP Tool 工具下载串口打印代码, 打印 Debug 控制位的值,用以进行以下检查。

如果是 SPC1168, SPD1148, SPC1158, SPD1163, SPD1178, SPD1188, SPC1198, SPC2168, SPC2166, SPC2165 如表 4-1 所示。如果任意分区被保护, Debug 功能就不会开启, 因此必须均为 0xFFFFFFF。

地址	配置字名称	配置字描述
		Flash 分区 0 保护字段
0x1100060C	ZONE0_FLASH_PROT	OxFFFFFFFF: 天闭 Flash 分区 0 保护
		具他值: 使能 Flash 分区 0 保护
		RAM 分区 0 保护字段
0x11000614	ZONE0_RAM_PROT	OxFFFFFFFF: 关闭 RAM 分区 0 保护
		其他值: 使能 RAM 分区 0 保护
		Flash 分区1保护字段
0x1100064C	ZONE1_FLASH_PROT	OxFFFFFFFF: 关闭 Flash 分区 1 保护
		其他值: 使能 Flash 分区 1 保护
		RAM 分区1保护字段
0x11000654	ZONE1_RAM_PROT	OxFFFFFFFF: 关闭 RAM 分区1保护
		其他值: 使能 RAM 分区 1 保护
		Flash 分区 2 保护字段
0x1100068C	ZONE2_FLASH_PROT	OxFFFFFFFF: 关闭 Flash 分区 2 保护
		其他值: 使能 Flash 分区 2 保护
		RAM 分区 2 保护字段
0x11000694	ZONE2_RAM_PROT	OxFFFFFFFF: 关闭 RAM 分区 2 保护
		其他值: 使能 RAM 分区 2 保护
		Flash 分区 3 保护字段
0x110006CC	ZONE3_FLASH_PROT	OxFFFFFFFF: 关闭 Flash 分区 3 保护
		其他值: 使能 Flash 分区 3 保护
		RAM 分区 3 保护字段
0x110006D4	ZONE3_RAM_PROT	OxFFFFFFFF: 关闭 RAM 分区 3 保护
		其他值: 使能 RAM 分区 3 保护
		看门狗使能字
0x11000700	WDT_ENABLE	OxFFFFFFFF: 芯片启动时禁用看门狗
		其他数值: 芯片启动时启用看门狗

表 4-1: 配置字的构成及其描述

如果是 SPC1128, 如表 4-2 所示。

表 4-2: 配置字的构成及其描述

地址	配置字名称	配置字描述
0x11000700	WDT_ENABLE	看门狗使能字 OxFFFFFFFF: 芯片启动时禁用看门狗

地址	配置字名称	配置字描述
		其他数值:芯片启动时启用看门狗
0x1100060C 0x11000614	CHIP_SECURITY	芯片调试接口锁定字 均为 0xFFFFFFFF: 芯片调试接口将不被锁定 其他数值: 芯片调试接口将被锁定

如果是 SPC1169 系列的产品,如表 4-3 所示。

表 4-3: 配置字的构成及其描述

地址	配置字名称	配置字描述
		看门狗使能字
0x1001FFF8	WDT_ENABLE	OxFFFFFFF: 芯片启动时禁用看门狗
		其他数值:芯片启动时启用看门狗
		芯片调试接口锁定字
0x1001FFFC	CHIP_SECURITY	OxFFFFFFFF: 芯片调试接口将不被锁定
		其他数值:芯片调试接口将被锁定

如果是 SPC2188, 如表 4-4 所示。

表 4-4: 配置字的构成及其描述

地址	配置字名称	配置字描述
		看门狗使能字
0x100FFFF8	WDT_ENABLE	OxFFFFFFF: 芯片启动时禁用看门狗
		其他数值:芯片启动时启用看门狗
		芯片调试接口锁定字
0x100FFFFC	CHIP_SECURITY	OxFFFFFFF: 芯片调试接口将不被锁定
		其他数值:芯片调试接口将被锁定

如果是 SPC1185, 如表 4-5 所示。

表 4-5: 配置字的构成及其描述

ECC	地址	配置字名称	配置字描述
开启	0x1003FFF8		看门狗使能字
关闭	0x1007FFF8	WDT_ENABLE	OxFFFFFFFF: 芯片启动时禁用看门狗 其他数值: 芯片启动时启用看门狗
开启	0x1003FFFC		芯片调试接口锁定字
关闭	0x1007FFFC	CHIP_SECURITY	OxFFFFFFFF: 芯片调试接口将不被锁定 其他数值: 芯片调试接口将被锁定

5 KEIL IDE 调试 RAM 中的程序

5.1 配置代码地址

5.1.1 Keil UI 配置代码地址

将 Keil 配置文件中代码的存放位置调整到 RAM 中。

如果"Linker"页"Use Memory Layout from Target Dialog"被勾选,则采用如图 5-1 所示 UI 改法,否则采用如图 5-2 所示 sct 文件改法。

		Deputition for larger rweit	
Device Target Output Listing Vser C/C++ Asm Use Memory Layout from Target Dialog Make RW Sections Position Independent Make RO Sections Position Independent	Linker <u>X</u> /O Base: <u>R</u> / <u>W</u> Base	Options for Target 'FWUib' Device 'Target' Dutput Listing User C/C++ Ar ARM ARMCM4_FP Yaal (MHz): 12.0 Operating system: None System Vewer File: ARMACM4.svd Use Custon File Read/Orly Memory Areas defaut of chip Stat Size Statup ROM1:C ROM2:C ROM3:C ROM3: _	a Linker Debug Vtilities
		OK Cano	el Defaults Help

图 5-1: 采用 UI 配置代码地址

- [2] 黄框内为 SPC1169 的代码段存储范围,蓝框内为数据段存储范围。
- 注意: 1. 本文所述为如何在 RAM 运行程序,因此代码段存储范围也在应在 RAM 区。
 - 不同型号芯片需要根据 TRM 手册,查询其 RAM 区在存储空间上的地址映射范围,并在 RAM 区中进行代码段与数据段的划分。
 - 3. 代码段与数据段的地址范围不可有重合部分。
 - 4. 需要特别注意图中黄框中的起始地址,在 ini 文件中将会继续使用到这个地址 信息。

5.1.2 Sct 文件配置代码地址

	🔣 Options for Target 'FWLib'	LR_IROM1 <mark>0x1FFFC0000x00004000</mark> {
	Device Target Output Listing User C/C++ Asm Linker	; load region size_region
	Use Memory Layout from Target Dialog X/O Base: Make RW Sections Position Independent R/O Base: Make RO Sections Position Independent R/W Base Don't Search Standard Libraries disable Warnings:	ER_IROM1 0x1FFFC000 0x00004000 { ; load address = execution address *.o (RESET, +First) *(InRoot\$\$Sections)
	Scatter File	.ANY (+RO) } RW_IRAM1 0x2000000 0x00004000 { ; RW data .ANY (+RW +ZI) }
[1]	上方 Project.sct,是以 32K RAM SPC1169 芯片	ī 为例。
[2]	黄框内为 SPC1169 的代码段存储范围,蓝框	内为数据段存储范围。

图 5-2: 采用 sct 文件配置代码地址

- 注意: 1. 本文所述为如何在 RAM 运行程序,因此代码段存储范围也在应在 RAM 区。
 - 2. 不同型号芯片需要根据 TRM 手册,查询其 RAM 区在存储空间上的地址映射范围,并在 RAM 区中进行代码段与数据段的划分。
 - 3. 代码段与数据段的地址范围不可有重合部分。
 - 4. 需要特别注意图中黄框中的起始地址,在 ini 文件中将会继续使用到这个地址 信息。

5.2 配置 ini 文件

与 DEBUG Flash 中代码不同, DEBUG RAM 中代码时, 需要告知跳转 PC, 以及堆栈信息等, 这需要 ini 的文件的帮助。

选中 Keil IDE "Debug"页,如图 5-3 所示。选择 J-LINK,勾选"Run to main",加载 ini 文件。

图 5-3: J-LINK

🔣 Options for	arget 'FWLib'		×
Device Target	Output Listing User C/C++	Asm Linker Debug Utilities	
○ Use <u>Simulator</u> □ Limit Speed to	with restrictions Settings Real-Time	● Use: J-LINK / J-TRACE Cortex Setting	s
Load Applicat	ion at Startup 🔽 Run to main()	Load Application at Startup Initialization File:]
	Edit	.RAM.ini	·
Restore Debug	Session Settings	Restore Debug Session Settings	
Breakpoin	ts IV Toolbox	Breakpoints Toolbox	
I✓ Watch Wi	ndows & Performance Analyzer	Watch Windows	
I. Memory D		I♥ Menory Display I♥ System viewer	
CPU DLL:	Parameter:	Driver DLL: Parameter:	
SARMCM3.DLL	-MPU	SARMCM3.DLL -MPU	
, Dialog DLL:	Parameter:	Dialog DLL: Parameter:	
DCM.DLL	-pCM4	TCM.DLL PCM4	
	Manage Component \	Newer Description Files	
	OK	ancel Defaults Help	

ini 文件内容	
FUNC void Setup (void)	
{	
SP = RDWORD(0x1FFFC000);	// Setup Stack Pointer
PC = RDWORD (0x1FFFC004);	// Set Program Counter
WDWORD (0xE000ED08, 0x1FFFC000);	<pre>// Set Vector Table Offset Register</pre>
}_	
_WDWORD (0x40001024, 0x1ACCE551);	<pre>// Enable WDT0 operation</pre>
WDWORD (0x40001124, 0x1ACCE551);	<pre>// Enable WDT1 operation</pre>
WDWORD (0x40001008, 0x0);	// Close WDT0
WDWORD (0x40001108, 0x0);	// Close WDT1
-	
LOAD %L INCREMENTAL	// Download to RAM
Setup();	
//g, main	
[1] 上方.ini,是以 32K RAM SPC1169 芯片为例。	

注意: 由于在图 5-3 中勾选了 "Run to main()"选项,所以在 ini 文件中就不需要再写 "g, main"语句,如果写了,将会触发两次进入 main 的动作。

对上方文件中重要的几个设置做如下相关说明:

1. .ini 文件与 Keil 配置代码地址的关系,如图 5-4,红色箭头连接的框图内填写的地址需一致。

ARM ARMCM4_F	P Xtal	(MHz): 12.0		
Operating system:	None	• • • • • • • •		
System Viewer File		_	FUNC void Setup (void)	
ARMCM4.svd Use Custom F Read/Only Men default off-chip	ile nory Areas Start	Size Startup	{ ↔ SP = _RDWORD (0x1FFFC000); PC = _RDWORD (0x1FFFC004); _wDWORD (0xE000ED08, 0x1FFFC000); } ↔ ↔ wDWORD (0x40001024, 0x1ACCE551); _wDWORD (0x40001024, 0x1ACCE551);	<pre>// Setup Stack Pointer# // Set Program Counter# // Set Vector Table Offset Registe // Enable WDT0 operation# // Enable WDT0 operation#</pre>
E ROM1:		c	WDWORD (0x40001124, 0x1ACCESS1); WDWORD (0x40001008, 0x0); WDWORD (0x40001108, 0x0);	// Close WDT04 // Close WDT14
ROM2:		с с	LOAD %L INCREMENTAL Setup(); ⁴⁴ //g, main ⁴³	// Download to RAM^{\downarrow}
IROM1:	0x1FFFC000	4000		
IROM2		0		

2. .ini 文件与 sct 文件配置代码地址的关系,如图 5-5,红色箭头连接的框图内填写的地址需一致。

图 5-5: .ini 文件与 Keil 配置代码地址关系

*.o (RESET, +First)↔ PC = _RDI *.o (RESET, +First)↔ WDWORD (0 *(InRoot\$\$Sections)↔ ↓ .ANY (+RO)↔ WDWORD (0x }↔ WDWORD (0x	DWORD (0x1FFFC004); // Set Program Counter (0xE000ED08, 0x1FFFC000); // Set Vector Table Offset Register x40001024, 0x1ACCE551); // Enable WDT0 operation x40001124, 0x1ACCE551); // Enable WDT0 operation
ANY (+RO)↔ → WDWORD (0x WDWORD (0x WDWORD (0x	x40001024, 0x1ACCE551); // Enable WDT0 operation4 x40001124, 0x1ACCE551); // Enable WDT1 operation4
RW_IKAMI1_0x2000000 0x00004000 wdword (0x { ← - - -	x40001008, 0x0); // Close WDT04 x40001108, 0x0); // Close WDT14
; RW data↩ LOAD %L IN Setup () ;↩ .ANY (+RW +ZI)↩ //g, main↩	NCREMENTAL // Download to RAMed

- **3.** SP = _RDWORD(0x1FFFC000): 调试开始时,将堆栈寄存器初始值设置为 0x1FFFC000 地址存储的内容。
- PC = _RDWORD(0x1FFFC004): 调试开始时,将 PC 设置为 "0x1FFFC000+4",即 0x1FFFC004 地址存储的内容。

- 5. _WDWORD(0xE000ED08, 0x1FFFC000): 调试开始时,将中断向量表偏移寄存器(地址为 0xE000ED08)设置为 0x1FFFC000。
- 6. 虽然默认情况下 WDT 是关闭的,但为了确保调试一切顺利,还需要主动关闭 WDT。
 - 注意: 1. 因为 UI 界面已勾选 "Run to main", ini 文件中不能重复配置 g, main。
 - 2. 请根据当前工程图 5-1 或图 5-2 配置 SP, PC, Vector Table Offset Register 值, "0x1FFFC000"与图中所配置代码段起始地址一致。
 - 3. 在添加设备信息时,请根据具体产品填入 WDT 寄存器地址,具体信息请仔细 阅读相关产品的 TRM。
 - 4. SP = _RDWORD("RAM 内存地址")需与 5.1 章节中为代码段配置的 RAM 区首 地址一致。

5.3 取消 Flash 配置

进入 J-LINK "Settings"页,识别目标板 ID,如图 5-6 所示,如无法识别目标板的 ID,需 回到章节 2,检查 J-Link 连线以及电平是否配置正确。

Cortex JLink/JTrace Target Driver Setup × Debug Trace Flash Download J-Link / J-Trace Adapter SW Device SW Device Maye
SN: 2000000 IDCODE Device Name Device: J-Link ARM-OB STM32 HW: V7.00 dll: V6.56 FW: J-Link ARM-OB STM32 com Port: Max SW 20MHz C Manual Configuration Device Name:
Auto Clk Add Delete Update IR len: Connect & Reset Options Cache Options Download Options Connect: Normal Reset: Normal Image: Cache Code Image: Connect Reset: Normal Image: Cache Code Image: Connect Image: Cache Code Image: Cache Code
Interface TCP/IP Image: Scan Network Settings State: ready Image: State: ready
确定 取消 应用(A)

图 5-6: DEBUG 工具读取目标 ID

如图 5-7 所示,取消 "Flash Download"页中所有 Flash 配置。

图 5-7: Flash Download 配置

Cortex JLink/JTrace Target Driver Setup Debug Trace Flash Download Download Function RAM for Algorithm C Erase Full Chip Program C Erase Sectors Verify C Do not Erase Reset and Run	×
Description Device Size Device Type Address Range	
Add Remove	
确定 取消 应用	(A)

5.4 调试

点击 Keil IDE 中的 Debug 按钮,就可以进行调试,如果产生 Warning,如图 5-8 所示,直接点确定忽略。进入 Debug 仿真界面如图 5-9。

图 5-8: Debug warning

JLink - Cortex-M Warning X
No Flash Operation Selected.
備定

图 5-9: Debug 仿真

如无法进入 Debug 仿真, 需回到章节 5.1, 检查所有配置。

6 IAR IDE 调试 RAM 中的程序

6.1 配置代码地址

将 IAR 配置文件 icf 中代码的存放位置改到 RAM 中,如图 6-1 所示。

图 6-1: 采用 icf 文件配置代码运行地址

/*-Specials-*/	
define symbolICFEDIT_intvec_start = 0x1FFFC000;	
/*-Memory Regions-*/	
define symbolICFEDIT_region_ROM_start = 0x1FFFC000;	
define symbol ICFEDIT region ROM end = 0x1FFFFFFF;	
define symbolICFEDIT_region_RAM_start = 0x2000000;	
define symbol ICFEDIT region RAM end = 0x20003FFF;	

[1] 上方.icf,是以 32K RAM SPC1169 芯片为例。

- [2] 黄框内为设置中断向量表的首地址,红框内为设置程序代码段的首地址和结束地址,蓝框内为设置 程序数据段的首地址和结束地址。
- 注意: 1. 本文所述为如何在 RAM 运行程序,因此代码段存储范围也在应在 RAM 区。
 - 2. 不同型号芯片需要根据 TRM 手册,查询其 RAM 区在存储空间上的地址映射范围,并在 RAM 区中进行代码段与数据段的划分。
 - 3. 代码段与数据段的地址范围不可有重合部分。

6.2 配置 mac 文件

mac 文件用来关闭 WDT。虽然默认情况下 WDT 是关闭的,但为了调试一切顺利,还是需要主动关闭 WDT。

在工程下新建 RAM.mac。

```
mac 文件内容
execUserSetup()
{
    message"----- execUserSetup -----";
// Disable WTD
    writeMemory32(0x1ACCE551, 0x40001024, "Memory");
    writeMemory32(0x1ACCE551, 0x40001124, "Memory");
    writeMemory32(0x0, 0x40001008, "Memory");
    writeMemory32(0x0, 0x40001108, "Memory");
    message"----- execUserSetupEnd -----";
}
```

[1] 上方 mac 文件,是以 32K RAM SPC1169 芯片为例。

注意: 在添加设备信息时,请根据具体产品填入 WDT 寄存器地址,具体信息请仔细阅读 相关产品的 TRM。

选中 IAR IDE "Debugger"中"Setup"页, 如图 6-2 所示。选择 J-LINK, 勾选"Run to main", 加载 mac 文件。

Options for node "Project"	×
Category: Factory Settings General Options Static Analysis Runtime Checking C/C++ Compiler Assembler Duty Converter Custom Build Build Actions Build Actions Driver Simulator CADI CMSIS DAP Setup macros GOB Server Setup macros I_jet/JTAGjet Jirk/J-Trace Ti Stellaris Nu-Link PE micro Setup description file TI MSP FET TI MSP TI MSP \$PROJ_DIR\$\\\\.\IDE_Support\EWARM\SPC1169.svd Multicor Image Macro Image Setup macros Image Setup macros Image Setup macros Image Setup macros Image Devige description file Image Setup Opting L\\\.\IDE_Support\EWARM\SPC1169.svd Image OK Cancel	

图 6-2: J-LINK

6.3 取消 Flash 配置

如图 6-3 所示,取消"Debugger""Download"页中 Flash 配置。

Options for node "Project"	×
Category: General Options Static Analysis Runtime Checking C/C++ Compiler Assembler Output Converter Custom Build Build Actions Linker Debugger Simulator CADI CMSIS DAP GDB Server I-jet/JTAGjet J-Link/J-Trace TI Stellaris Nu-Link PE micro ST-LINK Third/Party Driver TI MSP-FET TI XDS	Setup Download Images Extra Options Multicore Plugins Merify download Suppress download Suppress download Use flash loader(s) Qverride default .board file STOOLKIT_DIR\$\config\flashloader\SPINTROL\Flas Edit Perform mass erase before flashing
	OK Cancel

6.4 调试

点击 IAR IDE 中的 Debug 按钮,就可以进行调试,如果产生 Warning,如图 6-4 所示,则需 要选择 core Cortex-M4。

图 6-4: Debug warning

J-Link V6.14b - '	Target device settings				×
Filter <u>M</u> anufacturer *	 	Core	~	Little e	ndian 🗸
Manufacturer	Device	Core	NumCores	Flash size	RAM size \land
Unspecified	Cortex-M4	Cortex-M4	1		
AmbiqMicro	APOLLO2	Cortex-M4	1	1 MB	256 KB
AmbiqMicro	APOLL0512	Cortex-M4	1	512 KB	64 KB
AmbiqMicro	APOLLO256	Cortex-M4	1	256 KB	32 KB
AmbigMicro	APOLL0128	Cortex-M4	1	128 KB	32 KB
AmbiqMicro	APOLLO064	Cortex-M4	1	64 KB	16 KB
Analog	ADSP-CM402BSWZ-EF	Cortex-M4	1	512 KB	64 KB
Analog	ADSP-CM402BSWZ-FF	Cortex-M4	1	256 KB	64 KB
Analog	ADSP-CM403BSWZ-CF	Cortex-M4	1	2 MB	64 KB
Analog	ADSP-CM403BSWZ-EF	Cortex-M4	1	512 KB	64 KB
Analog	ADSP-CM403BSWZ-FF	Cortex-M4	1	256 KB	64 KB
Analog	ADSP-CM407BSWZ-AF	Cortex-M4	1	2 MB	64 KB
Analog	ADSP-CM407BSWZ-BF	Cortex-M4	1	2 MB	64 KB
Analog	ADSP-CM407BSWZ-DF	Cortex-M4	1	1 MB	64 KB 🗸
Select a device for Selecting a device download,modifica Breakpoints).	J-Link. is not required for most devices, but tion of flash memory during a debug s	allows more efficient operation ession as well as unlimited bre	of J-Link as well as fli akpoints in flash mem	ash ory (Flash	<u>C</u> ancel

图 6-6: Debug 仿真

<u>E</u> dit <u>V</u> iew <u>P</u> roject <u>D</u> ebug Disassembly J-Link Iools <u>W</u> indow <u>H</u> elp								
월 🖬 🖶 🛯 🖉 🗇 ଟ 👘 🖉 🖉 🖉 🚽 🖉 🖉 🚽 🖉 👘 👘 🖉								
space	• 4	× ma	main.c x					
д		ma	in()					
3S	۰ م			test pass.				
Project - Debug	~			* @note There is no need to use interrupts to get CRC results, because				
1 🛋 CMSIS				CRC results are obtained immediately. If you must use interrupts,				
3 🛋 Periph_Driver				note that interrupts may triggered twice, once after feed word				
1 🖬 User				stream and once after feed byte stream.				
3 🛋 Utilities				Α				
🗄 🛑 Output			L	*********				
			1	* */				
		=>	i	nt main(void)				
			F	uint32 t u32Result;				
				CLOCK_INIUMICHECO(10000000);				
				<pre>Delay_Init();</pre>				
			F	/*				
				* Init the UART				
			-	<i>k/</i>				
				PIN_SetChannel(PIN_GPI010, PIN_GPI010_UART0_TXD);				
				PIN_SetChannel(PIN_GPIO11, PIN_GPIO11_UART0_RXD);				
				UART_Init(UART0, 38400);				

如无法进入 Debug 仿真, 需回到章节 2, 检查 J-Link 连线以及电平是否配置正确; 以及回 到章节 6.1, 检查所有软件配置。