

使用指南

IAP Loader 使用指南

概述

本手册适用范围:

适用范围	
SPC1125 系列	SPC1125, SPC1128
SPC1168 系列	SPC1155, SPC1156, SPC1158, SPC1168,
	SPD1148, SPD1178, SPD1188, SPD1163,
	SPM1173
SPC2168 系列	SPC2168, SPC2165, SPC2166, SPC1198
SPC1169 系列	SPC1169, SPD1179, SPD1176
SPC2188 系列	SPC1185, SPC2188

目录

1	概述	7
1.1	IAP 上位机运行环境	7
2	IAP 实现	8
2.1	写存储器命令	9
2.2	擦除存储器命令	. 13
2.3	跳转命令	. 15
3	IAP 升级 APP	. 17
3.1	通过 UART 升级 APP	. 17
3.2	通过 LIN 升级 APP	. 20
3.3	通过 CAN/CANFD 升级 APP	. 24
4	IAP 升级结果	. 28

图片列表

IAP Loader 流程图	8
写存储器命令(主机侧)	10
写存储器命令(设备侧)	11
擦除存储器命令(主机侧)	13
擦除存储器命令(设备侧)	14
跳转命令(主机侧)	15
跳转命令(设备侧)	16
UART IAP 硬件连接	17
选择 UART 协议	18
串口波特率	18
下位机可握手窗口	19
LIN IAP 硬件连接	20
LIN IAP 硬件连接	21
选择 LIN 协议	22
LIN 波特率	23
下位机可握手窗口	23
: CAN/CANFD IAP 硬件连接	24
:选择 CAN 或 CANFD 协议	26
: 配置 CAN 或 CANFD 协议参数	26
: 下位机可握手窗口	27
用户应用程序的串口打印界面	28
	IAP Loader 流程图

表格列表

表 1-1:	Flash 启动与 BOOT 电平关系	7
表 2-1 :	IAP 命令集	9
表 2-2:	芯片和 N 以 Address 及对应关系	.12
表 2-3:	芯片对应扇区大小	.15
表 3-1:	芯片 UART 接口电平	.17

版本历史

版本	日期	作者	状态	变更
A/0	2023-09-01	X.He	Outdated	1. 首次发布。
A/1	2023-12-28	X.He	Outdated	 1. 添加章节3中的硬件连接描述。 2. 更新章节4中的图片。
C/0	2024-08-29	HangSu	Outdated	1. 更新章节1,2,3,4。
C/1	2024-09-05	HangSu	Released	1. 更新章节3。

术语或缩写

术语或缩写	描述
IAP	In Application Programming
ISP	In System Programming

1 概述

IAP 的全称是: In Applicatin Programming,即在应用编程。

IAP 所起的作用是对用户 APP 程序进行升级操作,当 MCU 刚上电时,会执行 IAP 程序,用 户需要在 IAP 中实现接收数据并实现对 APP 程序进行烧录的功能。整个工作流程描述如下:

1. 用户将 APP 的 hex 文件发给 IAP 程序;

2. IAP 程序将 APP 的数据写到特定的地址中;

3. APP 数据烧写完毕后, IAP 程序执行跳转操作, 跳转到 APP 程序并运行。

- 注意: 1. 在 Spintrol 设计中,为了确保 IAP 程序能够执行,需要将 BOOT 设置为特定电平,具体请见表 1-1。
 - 2. IAP 通信接口可根据实际情况进行选择, Spintrol SDK 已提供 UART、CAN、LIN 三种接口形式的 IAP 示例工程。

表 1-1: Flash 启动与 BOOT 电平关系

芯片	BOOT
SPC1125 系列	拉高
SPC1168 系列	拉高
SPC2168 系列	拉高
SPC1169 系列	拉低
SPC2188 系列	拉高

1.1 IAP 上位机运行环境

Win10 以下,现有 dll 不支持 Win11。

2 IAP 实现

图 2-1: IAP Loader 流程图

这里有两个延时,一个用来提供下位机开机时的可握手窗口,一个用来防止下位机在 IAP Loader 中死等。

图 2-1 所示的 IAP 流程中所支持的命令列如表 2-1 所示,每个命令在后续小结中进一步描述。

- ベ 2-1: IAP 叩マ - 乐	表	2-1:	IAP	命令集
---------------------	---	------	-----	-----

命令	Code	描述
Write Memory	0x36	从应用程序指定的地址开始,向 Flash 存储器写入
		最多 256 字节的数据。
Erase Memory	0x34	擦除指定的 Flash 存储器区域。
Jump Menory	0x21	跳转到指定位置运行 APP 程序。

通信安全性

所有从编程工具到设备的通信都经过以下验证:

- 校验和:接收到的数据块所有字节进行异或运算。在每次通信结束时添加一个包含所有先前字节异或运算结果的字节(校验和字节),通过对所有接收到的字节(数据+校验和)进行异或运算,在数据包的结尾处的结果必定为0x00。
- 对于每个命令, 主机发送一个字节及其补码(XOR = 0x00)。

注意: XOR (A, B) = 0xFF^A^B。

每个数据包都会被接受(ACK 答复)或丢弃(NACK 答复):

- ACK = 0x79
- NACK = 0x1F

2.1 写存储器命令

主机行为如下:

Byte 1:	0x36			
Byte 2 to 5:	Start addr	ress		
	-	byte 2: LSB		
	-	byte 5: MSB		
Byte 6:	Checksum	ו: XOR (Byte 1 ~ Byte 5	5) Wait for ACK	
Byte 7:	Number o	of bytes to be written	(0 < N ≤ 255)	
N +1 data bytes:	(IVIAX 256	bytes)		
Checksum byte:	XOR (Byte	? 7 ~ N+1 data bytes) \	Vait for ACK	
注意: Byte 7(输 byte	N)最大为2 数。	255,无法直接表示:	256,因此协议规定,	采用 N+1 表示实际传

从机行为如下:

图 2-3: 写存储器命令(设备侧)

由于硬件设计上的不同,底层 Write 函数能力也不一样,致使下位机能接受的 N 以及 Address 也有一定的限制,具体请参考表 2-2。

芯片	最小写入 Byte 单位	N+1	Address
SPC1169 系列	8Byte	8的倍数	8Byte 对齐
SPC1168 系列	4Puto	▲ 的	4Duto 对文
SPC1125 系列	4Вусе	4 时间数	4Byle MJ7F
SPC2188 系列	1Byte	1的倍数	1Byte 对齐

表 2-2: 芯片和 N 以 Address 及对应关系

以 SPD1179 为例, N +1 必须是 8 的倍数, 且上限不能超过 256, 同时 Address 必须 8 Byte 对齐。

2.2 擦除存储器命令

主机行为如下:

- Byte 1: 0x34
- Byte 2 to 5: Start address
 - byte 2: LSB
 - byte 5: MSB
- Byte 6 to 9: Size to be erased
 - byte 6: LSB
 - byte 9: MSB
- Byte 10: Checksum: XOR (Byte 1 ~ Byte 9) Wait for ACK

从机行为如下:

图 2-5: 擦除存储器命令(设备侧)

表 2-3: 芯片对应扇区大小

芯片	扇区大小
SPC1169 系列	4К
SPC1168 系列 SPC1125 系列	512B
SPC2188 系列	默认 ECC 使能时有效容量为 2KB; 关闭 ECC 后有效容量为 4KB。

2.3 跳转命令

主机行为如下:

- Byte 1: 0x21
- Byte 2 to 5: Go address
 - byte 2: LSB
 - byte 5: MSB

Byte 6: Checksum: XOR (Byte 1 ~ Byte 5) Wait for ACK

图 2-6: 跳转命令(主机侧)

从机行为如下:

图 2-7: 跳转命令(设备侧)

3 IAP 升级 APP

3.1 通过 UART 升级 APP

适用范围 SPC1168 系列,SPC2168 系列,SPC1125 系列,SPC1169 系列,SPC2188 系列

硬件连接如图 3-1 所示,上下位机连接的步骤及注意事项:

- USB_TO_UART 的 TXD 与芯片的 RXD, USB_TO_UART 的 RXD 与芯片的 TXD 相接;
- 如果通讯异常, 排查上位机选择的串口端口号是否错误, 排查 UART 接口电平是否符合预期, 不同芯片 UART 接口电平如表 3-1 所示。

图 3-1: UART IAP 硬件连接

表 3-1: 芯片 UART 接口电平

芯片	UART 接口电平
SPC1168 系列,SPC1125 系列,SPC2168 系列,SPC2188 系列	3.3V
SPC1169 系列	5V

IAP Loader 下载步骤:

- 1. 通过 ISP/SWD 方式将编译好的 IAP Loader 程序下载到 Flash;
- 2. 切换 BOOT 到 Flash 启动模式,为 IAP Loader 启动做好准备。

App 下载步骤:

1. 选择对应下载的串口;

- 2. 打开串口;
- 3. 在界面的"ProtocolType"选择 UART 协议;
- 4. 点击界面中"Select File"选项,选择需要更新的应用程序;
- 5. 点击界面的" 🛃"图标,进行下载程序;
- 6. 10s 内给芯片上电。

🚺 IAP Loader v1.1.3			-	- [x c	
SerialPort COM28	- 🕕 Protoc	colType UART	- 🕸 ili 🐥			
1	2	3	5			
Program File			d Protocol Select			
			Start: 0x0000000			
Select File		🗹 Auto Reload File	Size: 0x00000000			
Successfully Open COM28				^		
				~		
L					1	

图 3-2: 选择 UART 协议

" 🌣 "可以配置波特率,如果参数变更,下位机需同步修改。

推荐波特率 2400 到 115200。

图 3-3: 串口波特率

💀 Serial port :	setup for [COM	-		×
Baud rate:	38400			-
Data:	3 ~		01	{
Parity:	None ~		Can	-el
Stop:	1 ~		Can	

为了缩短 APP 启动时间,示例 IAP Loader 预留可握手窗口为 ms 级,因此 App 下载步骤中最后两步不能颠倒,否则上位机一定会错过下位机上电后的可握手窗口。

如果在下位机可握手窗口**内**和上位机握手成功,双方进入具体擦,写,跳转 cmd 通讯; 如果在下位机可握手窗口**内**和上位机握手失败,上位机继续发送握手信号; 如果在下位机可握手窗口**结束时刻**,双方仍未握手成功,则下位机直接跳到 APP 运行。

SPIN TRO

通过 LIN 升级 APP 3.2

适用范围 SPC2188 系列, SPC1169 系列

硬件连接如图 3-5 所示, USB_TO_LIN 采用的是一个 USB 转 LIN 的工具(工具链接)。 上下位机连接的步骤及注意事项:

- 上位机和下位机通过 LIN 和 GND 连接起来;
- 确保 USB_TO_LIN 为独立供电,图示中 USB_TO_LIN 与下位机供电均未 VBAT 只是表示 USB_TO_LIN 与下位机电压相同,并不表示两者使用同一个电源;
- 通常 VBAT 选用 12V;
- 上位机(LIN 主机)已经集成 1k 上拉电阻,无需外部 1k 上拉;
- 下位机(LIN 从机)已经集成 30k 上拉电阻,无需外部 30k 上拉;
- 下位机(LIN 从机)需在靠近芯片 LIN 口位置处加入 220pF 对地电容。

图 3-5: LIN IAP 硬件连接

对于 SPD1179, SPD1176, LIN PHY 与 MCU 和封在一起。 [1]

图 3-6: LIN IAP 硬件连接

[1] 对于 SPC1169, SPC1185, SPC2188, 需要在电路板上添加 LIN PHY;

[2] 对于 SPC1169, SPC1185, SPC2188, 不支持 12V 供电, 需要在电路板上添加电源转换模块;

[3] LIN PHY 各 PIN 脚需要按照对应厂家数据手册配置,图中只给出 TXD 与 RXD 对应关系。

如果通讯异常,可重点排查以下选项:

- PHY 供电是否符合预期;
- PHY 通信电平是否和芯片兼容,如果有输入电平控制脚,检查其上电压是否符合预期;
- PHY 是否具有控制脚,如果有,核实其电平是否符合预期;
- 上位机选择的串口端口号是否错误;
- 电路板上的 LIN 是否连了冗余电路(比如将 LIN 连接到 MON 口或 LIN 上加了描述之外的 上拉电阻、对地电容等)。

IAP_Loader 下载步骤:

- 1. 通过 ISP 方式编译 IAP_Loader 并下载到 Flash (也可采用 JTAG/SWD);
- 2. 切换 BOOT 到 Flash 启动模式。

IAP_App 下载步骤:

- 1. 选择对应 USB 设备;
- 2. 打开 USB 设备;
- 3. 在界面的"ProtocolType"选择 LIN 协议;
- 4. 点击界面中"Select File"选项,选择需要更新的应用程序;
- 5. 点击界面的" 🛃"图标,进行下载程序;
- 6. 10s 内给芯片上电。

注意: 芯片掉电时, USB_TO_LIN 工具不能掉电。

图 3-7: 选择 LIN 协议

Imported coll Type 3 3 Code Info Start: 0x00000000 Size: USB2FWM, USB2SENT, CAN2LIN			~
vrotocolType IN 3 Auto Reload File USB2PWM, USB2SENT, CAN2LIN	- • 🌣 iit 🐥	5 Code Info Start: 0x00000000 Size: 0x00000000	
VrotocolType	LIN	3 Reload File	ENT, CAN2LIN
N,	ProtocolType	V Auto	N, USB2PWM, USB2S
c.	v1.1.3 B2XXX	1	uccess! XX FS Applic :2024/02/01 00104A80 String:USB2C Success!
v1.1.3 32XXX 1 4 .ccess! XX FS Appli :2024/02/01 00104A80 String: USB21 uccess!	IAP Loader SerialPort USE	Program File Select File	Open device su Firmware Info: Name:USB2X Build Date Functions: Functions Open USB2XXX S Change to LIN

"🚻"可以配置波特率,如果参数变更,下位机需同步修改。

推荐波特率 4800 到 100000。

🖳 LIN Protoco	l Config	_		×
Baud rate:	50000	[ОК	
		[Cance	el

图 3-8: LIN 波特率

为了缩短 APP 启动时间,示例 IAP Loader 预留可握手窗口为 ms 级,因此 App 下载步骤中最后两步不能颠倒,否则上位机一定会错过下位机上电后的可握手窗口。

如果在下位机可握手窗口**内**和上位机握手成功,双方进入具体擦,写,跳转 cmd 通讯; 如果在下位机可握手窗口**内**和上位机握手失败,上位机继续发送握手信号;

如果在下位机可握手窗口结束时刻,双方仍未握手成功,则下位机直接跳到 APP 运行。

图 3-9: 下位机可握手窗口

3.3 通过 CAN/CANFD 升级 APP

适用范围 SPC2188 系列,SPC1169 系列

硬件连接如图 3-10 所示, USB_TO_CAN/CANFD 采用的是一个 USB 转 CAN/CANFD 的工具(工具链接)。

上下位机连接的步骤:

- 上位机和下位机通过 CANL, CANH 和 GND 连接起来;
- 上位机 CANL, CANH 间已经集成 120 欧电阻,无需再加;
- 下位机 CANL, CANH 间需要加入 120 欧电阻;
- USB_TO_CAN/CANFD 通过 PC 供电,芯片通过 VCC 供电。

图 3-10: CAN/CANFD IAP 硬件连接

如果通讯异常,可重点排查以下选项:

- PHY 供电是否符合预期;
- PHY 通信电平是否和芯片兼容,如果有输入电平控制脚,检查其上电压是否符合预期;
- PHY 是否具有控制脚,如果有,核实其电平是否符合预期;
- 上位机选择的串口端口号是否错误;
- CAN TXD, RXD 是否相连正确。

IAP Loader 下载步骤:

1. 如果通信介质是 CAN, Spintrol SDK 中的 IAP Demo 的代码应将宏"USE_CANFD_IAP" 配置 为 0, 然后编译 IAP, 并通过 ISP/SWD 方式下载到 Flash;

IAP_Loader/main.c	
/*	
* 0: USE CAN	
* 1: USE CANFD	
*/	
#define USE CANFD IAP	0

2. 如果通信介质是 CAN, Spintrol SDK 中的 IAP Demo 的代码应将宏"USE_CANFD_IAP" 配置 为 1, 然后编译 IAP, 并通过 ISP/SWD 方式下载到 Flash;

3. 切换 BOOT 到 Flash 启动模式。

App 下载步骤:

- 1. 选择对应下载的串口;
- 2. 打开串口;
- 3. 在界面的 "ProtocolType"选择 CAN 或 CANFD 协议;
- 4. 点击界面中"Select File"选项,选择需要更新的应用程序;
- 5. 点击界面的" 🚽"图标,进行下载程序;
- 6. 10s 内给芯片上电。

注意: 如果下载失败,排查以上配置无误后,可再次尝试下载。

_					
🛃 IAP Loader v1.1.3	-	IAP Loader v1.1.3		-	\Box \times
SerialPort COM5 - 🕕 ProtocolType	CAN 🔽 🌣 👯 🐥	SerialPort COM5	ProtocolType CANFD	- 🌣 ilt 🐥	
Program File Select File 4 ✓ Auto Successfully Open COM5	3 C Protocol Select Start: 0x0000000 Reload File Size: 0x0000000	Program File Select File 4 Successfully Open COM5	2 3	Ce Protocol Select	~

图 3-11: 选择 CAN 或 CANFD 协议

"¹"可以配置 CAN 或 CANFD 协议参数,设置通信频率以及采样点,如果参数变更,下 位机需同步修改。

🔜 CAN Protocol Config	-		×	💀 CANFD Protocol Config	- 🗆 X
BS1 (0~255) BS1: 126 BS2 (0~127) BS2: 31 BRP (0~511) BRP: 0 Baud rate:80M/{(BRP+1)*(BS1+BS2+3)} Baud rate: 500000 Sample point: (BS1+2)/(BS1+BS2+3) Sample point: 80				Arbitration BS1 (0°255) BS1: 126 BS2 (0°127) BS2: 31 BRP (0°511) BRP: 0 Baud rate:80M/{(BRP+1)*(BS1+BS2+3)} Baud rate: 500000 Sample point: (BS1+2)/(BS1+BS2+3) Sample point: 80	Data BS1(0~31) BS1: 14 BS2(0~15) BS2: 3 BRP(0~31) BRP: 1 Baud rate:80M/{(BRP+1)*(BS1+BS2+3)} Baud rate: 2000000 Sample point: (BS1+2)/(BS1+BS2+3) Sample point: 80
Cancel		01	K	Cancel	OK

图 3-12: 配置 CAN 或 CANFD 协议参数

为了缩短 APP 启动时间,示例 IAP Loader 预留可握手窗口为 ms 级,因此 App 下载步骤中最后两步不能颠倒,否则上位机一定会错过下位机上电后的可握手窗口。

如果在下位机可握手窗口**内**和上位机握手成功,双方进入具体擦,写,跳转 cmd 通讯; 如果在下位机可握手窗口**内**和上位机握手失败,上位机继续发送握手信号; 如果在下位机可握手窗口**结束时刻**,双方仍未握手成功,则下位机直接跳到 APP 运行。

图 3-13: 下位机可握手窗口

©2024 旋智电子科技(上海)有限公司

4 IAP 升级结果

若使用 Spintrol 提供的 IAP Demo, IAP 升级 APP 之后将会有如图 4-1 所示的打印信息。

图 4-1: 用户应用程序的串口打印界面

<pre>29</pre>	SPINTROL ISP Tool v2.5.7 Device SPD1179 Port COM17 Frogram Chip Vert Communication EEFFOM Burner Just an IAP sample Just an IAP sample
46 47 48 49 50 50 50 50 50 50 50 50 50 50	Just an LN sample Just an LN sample